API Reference¶
Core Classes¶
MultipoleEmulators¶
The main class for computing galaxy power spectrum multipoles.
Methods:
- get_Pl(cosmo_params, bias_params, D)
: Compute power spectrum multipole
- P11
: Access P11 component emulator
- Ploop
: Access Ploop component emulator
- Pct
: Access Pct component emulator
MultipoleNoiseEmulator¶
Extension of MultipoleEmulators with stochastic noise terms.
Methods:
- get_Pl(cosmo_params, bias_params, D, stoch_params)
: Compute multipole with noise
Cosmology Classes¶
W0WaCDMCosmology¶
w₀wₐCDM cosmology with massive neutrinos support.
Parameters:
- ln10As
: Log amplitude of primordial power spectrum
- ns
: Spectral index
- h
: Hubble parameter
- omega_b
: Baryon density
- omega_c
: CDM density
- m_nu
: Neutrino mass [eV]
- w0
: Dark energy equation of state
- wa
: Dark energy equation of state evolution
Methods:
- D_z(z)
: Growth factor at redshift z
- H_z(z)
: Hubble parameter at redshift z
- comoving_distance(z)
: Comoving distance to redshift z
Loading Functions¶
load_multipole_emulator¶
Load a multipole emulator from disk.
Parameters:
- path
: Path to emulator directory
Returns:
- MultipoleEmulators
instance
force_update¶
Force update of cached emulator data.
Downloads latest emulator data from Zenodo and updates local cache.
Pre-trained Emulators¶
The following pre-trained emulators are available through jaxeffort.trained_emulators
:
pybird_mnuw0wacdm¶
Emulator trained on PyBird calculations with w₀wₐCDM cosmology and massive neutrinos.
- Multipoles available: 0 (monopole), 2 (quadrupole), 4 (hexadecapole)
- Redshift range: 0.5 - 2.0
- k range: 0.005 - 0.3 h/Mpc
- Parameters:
- Cosmological: z, ln10As, ns, H0, ombh2, omch2, Mnu, w0, wa
- Bias: b1, b2, b3, b4, b5, b6, b7, f
Example usage:
P0 = jaxeffort.trained_emulators["pybird_mnuw0wacdm"]["0"]
P2 = jaxeffort.trained_emulators["pybird_mnuw0wacdm"]["2"]
P4 = jaxeffort.trained_emulators["pybird_mnuw0wacdm"]["4"]
Utility Functions¶
get_stoch_terms¶
Compute stochastic EFT terms.
Parameters:
- k
: Wavenumber array
- ceps0
: Constant stochastic term
- ceps1
: Linear stochastic term coefficient
- ceps2
: Quadratic stochastic term coefficient
Returns: - Array of stochastic contributions