jaxeffort¶
Welcome to the documentation for jaxeffort, a JAX-based emulator for galaxy power spectra with bias modeling and EFT corrections.
Overview¶
jaxeffort provides fast and differentiable emulation of galaxy power spectrum multipoles, enabling:
- Fast evaluation of galaxy power spectra multipoles (P₀, P₂, P₄)
- Automatic differentiation through JAX for gradient-based inference
- Bias modeling with EFT corrections
- GPU acceleration for large-scale analyses
Key Features¶
🚀 Performance¶
- Orders of magnitude faster than traditional Boltzmann solvers + perturbation theory codes
- Fully JAX-compatible for automatic differentiation
- GPU-accelerated computations
🎯 Accuracy¶
- Trained on high-precision PyBird calculations
- Sub-percent level accuracy across parameter space
- Validated against CLASS+PyBird pipeline
🔧 Flexibility¶
- Support for various cosmological models (ΛCDM, w₀wₐCDM with massive neutrinos)
- Full bias expansion including EFT corrections
- Easy integration with inference frameworks
Quick Start¶
import jaxeffort
import jax.numpy as jnp
# Load pre-trained emulators
P0 = jaxeffort.trained_emulators["pybird_mnuw0wacdm"]["0"]
P2 = jaxeffort.trained_emulators["pybird_mnuw0wacdm"]["2"]
P4 = jaxeffort.trained_emulators["pybird_mnuw0wacdm"]["4"]
# Set cosmological and bias parameters
cosmo_params = jnp.array([z, ln10As, ns, H0, ombh2, omch2, Mnu, w0, wa])
bias_params = jnp.array([b1, b2, b3, b4, b5, b6, b7, f])
# Compute growth factor
cosmo = jaxeffort.W0WaCDMCosmology(...)
D = cosmo.D_z(z)
# Get multipoles
P0_vals = P0.get_Pl(cosmo_params, bias_params, D)
P2_vals = P2.get_Pl(cosmo_params, bias_params, D)
P4_vals = P4.get_Pl(cosmo_params, bias_params, D)
Installation¶
Install from PyPI:
Or install the latest development version:
Documentation Structure¶
- Usage Examples - Detailed examples and tutorials
- Data Management - Managing emulator data
- API Reference - Complete API documentation
- Contributing - Guidelines for contributors
Citation¶
If you use jaxeffort in your research, please cite:
M. Bonici, G. D'Amico, J. Bel, C. Carbone, Effort.jl: a fast and differentiable emulator for the Effective Field Theory of the Large Scale Structure of the Universe, JCAP 09 (2025) 044